Composition Operators between Generally Weighted Bloch Spaces of Polydisk
نویسندگان
چکیده
Let φ be a holomorphic self-map of the open unit polydisk U in C and p, q > 0. In this paper, the generally weighted Bloch spaces B log(U ) are introduced, and the boundedness and compactness of composition operator Cφ from B p log(U ) to B log(U ) are investigated.
منابع مشابه
Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces
Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.
متن کاملWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملWeighted Composition Operators between different Bloch-type Spaces in Polydisk
Let φ(z) = (φ 1 (z),. .. , φ n (z)) be a holomorphic self-map of U n and ψ(z) a holomorphic function on U n , where U n is the unit polydisk of C n. Let p ≥ 0, q ≥ 0, this paper gives some necessary and sufficient conditions for the weighted composition operator W ψ,φ induced by ψ and φ to be bounded and compact between p-Bloch space B p (U n) and q-Bloch space B q (U n).
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کامل